Optogenetic regulation of leg movement in midstage chick embryos through peripheral nerve stimulation.

نویسندگان

  • Andrew A Sharp
  • Sylvia Fromherz
چکیده

Numerous disorders that affect proper development, including the structure and function of the nervous system, are associated with altered embryonic movement. Ongoing challenges are to understand in detail how embryonic movement is generated and to understand better the connection between proper movement and normal nervous system function. Controlled manipulation of embryonic limb movement and neuronal activity to assess short- and long-term outcomes can be difficult. Optogenetics is a powerful new approach to modulate neuronal activity in vivo. In this study, we have used an optogenetics approach to activate peripheral motor axons and thus alter leg motility in the embryonic chick. We used electroporation of a transposon-based expression system to produce ChIEF, a channelrhodopsin-2 variant, in the lumbosacral spinal cord of chick embryos. The transposon-based system allows for stable incorporation of transgenes into the genomic DNA of recipient cells. ChIEF protein is detectable within 24 h of electroporation, largely membrane-localized, and found throughout embryonic development in both central and peripheral processes. The optical clarity of thin embryonic tissue allows detailed innervation patterns of ChIEF-containing motor axons to be visualized in the living embryo in ovo, and pulses of blue light delivered to the thigh can elicit stereotyped flexures of the leg when the embryo is at rest. Continuous illumination can disrupt full extension of the leg during spontaneous movements. Therefore, our results establish an optogenetics approach to alter normal peripheral axon function and to probe the role of movement and neuronal activity in sensorimotor development throughout embryogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optogenetic Regulation of Leg Movement in Mid-stage Chick

22 Numerous disorders that affect proper development, including the structure and 23 function of the nervous system, are associated with altered embryonic movement. 24 Ongoing challenges are to understand in detail how embryonic movement is generated 25 and to better understand the linkage between proper movement and normal nervous 26 system function. Controlled manipulation of embryonic limb m...

متن کامل

Effect of Optogenetic Stimulation on Neuroplasticity of the Embryonic Chick Motor System

There is growing knowledge that neuronal circuitry undergoes alteration throughout development. Experience plays a key role in the reorganization of neuronal circuitry through the various mechanisms of learning. For example, when an animal is deprived of sensory input such as light in one or both sides of the eye, it can result in blindness on that side. In a study of rats placed in either isol...

متن کامل

A New Nonlinear Autoregressive Exogenous (NARX)-Based Intra-Spinal Stimulation Approach to Decode Brain Electrical Activity for Restoration of Leg Movement in Spinally-Injured Rabbits

This study aims at investigation of stimulation by using intra-spinal signals decoded from electrocorticography (ECoG) assessments to restore the movements of the leg in an animal model of spinal cord injury (SCI). The present work comprised of three steps. First, ECoG signals and the associated leg joint changes (hip, knee, and ankle) in sedated healthy rabbits were recorded in different trial...

متن کامل

The effect of chick embryo amniotic fluid on sciatic nerve regeneration of rats

The purpose of this experimental study was to evaluate the effect of chicken amniotic fluid (AF) on a cross section of rat sciatic nerves. Thirty adult male Sprague-Dawley rats weighing 275 to 300 g, were randomized into three groups treated with (1) amniotic fluid or AF (n=10), (2) normal saline or NS (n=10), and (3) sham surgery (n=10). The AF was aspirated from the amniotic cavity of incubat...

متن کامل

Direct electrical stimulation promotes growth and enhances survival of aneurogenic muscles of the chick embryo.

Analyses of embryonic aneurogenic muscles indicate that several processes associated with early myogenesis in vivo proceed in the absence of peripheral nerves. However, aneurogenic muscles demonstrate impaired growth and limited survival. To investigate whether neurally mediated activity is responsible for these phenomena, aneurogenic muscles of the chick embryo were directly stimulated in vivo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 106 5  شماره 

صفحات  -

تاریخ انتشار 2011